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New sclerochronological data suggest that a variability comparable to the North Atlantic Oscillation (NAO) was
already present during the middle Oligocene, about 20 Myr earlier than formerly assumed. Annual increment
width data of long-lived marine bivalves of Oligocene (30–25 Ma) strata from Central Europe revealed a distinct
quasi-decadal climate variabilitymodulated on 2–12 (mainly 3–7) year cycles. As inmany othermodern bivalves,
these periodic changes in shell growthweremost likely related to changes in primary productivity, which in turn,
were coupled to atmospheric circulation patterns. Stable carbon isotope values of the shells (δ13Cshell) further cor-
roborated the link between shell growth and food availability. Sub-decal oscillations in the 3–7 year band in other
annually resolved fossil archives were often interpreted as El Niño-Southern Oscillation (ENSO) cycles. This pos-
sibility is discussed in the present study. However, combined shell-derived proxy and numerical climate model
data lend support to the interpretation of a NAO-like variability. According to numerical climate models, winter
sea-level pressure (wSLP) and precipitation rate (wPR) across Central Europe during the Oligocene exhibited a
pattern similar to the modern NAO. The simulated NAO index for the Oligocene shows periodicities coherent
with those revealed by the proxy data (2.5–6 years), yet, on shorter wavelengths than themodern NAO (biennial
and 6–10 year cycles). Likely, the different paleogeography and elevated atmospheric CO2 concentrations not only
influenced the sea-level pressure pattern, but also the temporal variability of the NAO precursor. The present
study represents the first attempt to characterize the inter-annual climate variability in Central Europe during
the Oligocene and sets the basis for future studies on the early phase of the Cenozoic icehouse climate state.
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1. Introduction

The Eocene/Oligocene boundary marks the shift of global climate
from the early Paleogene Greenhouse to the modern icehouse state
(Miller et al., 1991; Zachos et al., 2008). The resulting pervasive climate
deterioration particularly affected the Northern Hemisphere, leading to
the largest marine and terrestrial faunal turnover of the Cenozoic era in
Europe (Prothero, 1994; Prothero et al., 2003), also known as theGrande
Coupure (Stehlin, 1909). Previous studies suggested that climatic chang-
es across the North Atlantic sector and Central Europe significantly con-
tributed to this event (e.g., Ivany et al., 2000; Eldrett et al., 2009;
Mosbrugger et al., 2005; Kocsis et al., 2014). For example, according to
palynological data, mean annual and winter temperatures dropped by
ca. 3 to 10 °C (Mosbrugger et al., 2005; Erdei et al., 2012) between the
late Eocene and the early Oligocene (Rupelian). A similar trend was re-
constructed from the oxygen isotope composition of terrestrial rodent
teeth phosphate (Héran et al., 2010). Likely, climate cooling in Central
Europe was related to a change of the source of atmospheric masses
.

across the continent. Numerical model simulation and proxy data sug-
gest that until the Eocene, central European atmospheric masses origi-
nated from the Tethys and the Pacific Ocean (e.g., Bice et al., 2000;
Kocsis et al., 2014). As indicated by varved sediments, atmospheric cir-
culation was controlled by the ENSO during this time interval
(Mingram, 1998; Lenz et al., 2010). However, δ18O data from terrestrial
mammals from Europe show a trend toward negative values from the
Eocene to the Oligocene (Héran et al., 2010; Kocsis et al., 2014) suggest-
ing a shift of the source of the atmospheric moisture toward the North
Atlantic during the Late Paleogene. This time interval coincides with
the major uplift phase of the Alps (Kuhlemann, 2007), which likely
acted as an atmospheric barrier to the Tethyan realm and the Pacific cli-
mate (Kocsis et al., 2014). This configuration resembles the modern sit-
uation with the westerlies being the major trajectory of Central
European atmospheric masses (Hurrell and Deser, 2009). Today, the in-
terannual climate variability of Europe is largely influenced by sea-level
pressure (SLP) dynamics across theNorth Atlantic, i.e., the North Atlantic
Oscillation. As indicated by annually resolved δ18O data from corals
(Brachert et al., 2006; Mertz-Kraus et al., 2009), speleothems (e.g.,
Scholz et al., 2012) and laminated lacustrine sediments (Muñoz et al.,
2002; Kloosterboer-Van Hoeve et al., 2006), the NAO existed already
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